ОАО «Специальное Конструкторское Бюро Информационно-Измерительных Систем» Санкт-Петербург

Модуль интерфейса ЛИР-919

Руководство по эксплуатации BEPY.406920.002P3

Версия ПО 1.5

Оглавление

Назначение устройства	3
1. Описание устройства	5
1.1. Органы управления	10
1.2. Органы индикации	10
2. Код заказа	12
3. Работа с устройством	14
4. Регистры Modbus RTU.	16
5. Гальваническая развязка	26
5.1. ЛИР-919	26
5.2. ЛИР-919Д-30	27
5.3. ЛИР-919Д-05	28
6. Подключение устройства	29
6.1. Подключение преобразователя перемещений	29
6.2. Подключение аналогового датчика	32
6.3. Подключение входов	33
6.4. Подключение выходов	37
6.5. Подключение интерфейса связи RS-485	41
7. Обновление встроенного ПО	42
8. Области применения устройства	43
Транспортировка и хранение	45
Адрес предприятия-изготовителя	46

Назначение устройства

Модуль интерфейса ЛИР-919 предназначен для эксплуатации в измерительноинформационных системах. ЛИР-919 является универсальным устройством связи инкрементных или абсолютных преобразователей перемещения с персональным компьютером (ПК) или программируемым логическим контроллером (ПЛК). Связь с устройством осуществляется через последовательный интерфейс USB, последовательный интерфейс RS-485 (Modbus RTU), через локальную сеть (Modbus RTU over TCP/IP, Modbus TCP/IP) или через радиоканал (спец. протокол). ЛИР-919 преобразует сигналы преобразователей в формат, предназначенный для дальнейшей обработки средствами информационной системы.

Также интерфейс имеет дискретные входы и выходы, через которые может быть осуществлено управление внешними устройствами.

Интерфейс имеет возможность управления двигателем для позиционирования в заданную точку, а также возможность составления программы последовательности действий.

ЛИР-919 может быть объединён в сеть с аналогичными устройствами через последовательный интерфейс RS-485 (по специализированному протоколу), а также с контроллером электроавтоматики ЛИР-986 и взаимодействовать друг с другом.

Функциональность устройства:

- поддержка абсолютных и инкрементных преобразователей;
- встроенный 64-битный программно-аппаратный счетчик позиции;
- для инкрементных датчиков: контроль целостности линии;
- для абсолютных датчиков: контроль формата пакета;
- таблица коррекции координаты на 100 точек с любым шагом;
- > сохранение в энергонезависимой памяти значения смещения абсолютных систем координат (G53,G54,...);
- > внутренний буфер на 1000 позиций с возможностью записи по таймеру или внешнему сигналу;
- входы/выходы для управления внешними устройствами с гальванической развязкой;
- задание до 4 зон по позиции с привязкой к выходам;
- управление позиционированием в заданную точку;
- межинтерфейсная синхронизация (создаётся многоосевая система из нескольких ЛИР-919);
- » взаимодействие с ЛИР-986 через интерфейс RS-485 (расширение входов/выходов, взаимодействие с программой в ЛИР-986 через маркеры);
- работа по заданной пользователем последовательности действий;
- широкий выбор настроек;
- возможность питания как от внешнего источника (приоритетный), так и от USB (зависит от потребления датчика);
- полная гальваническая развязка: USB, RS-485, питания и входов/выходов;
- возможность обновления прошивки;
- контроль целостности прошивки и настроек.

Основные характеристики:

Параметр/Исполнение	Приборное	Ha din рейку
Габаритные размеры (ВхШхГ),	Для модификации:	(без/с антенной):
MM	без опций связи:	100/327 x 23/128 x 114
	25 x 45 x 77	
	с опцией связи Ethernet:	
	25 x 45 x 85	
	с опцией связи радио	
	(без/с антенной):	
	25/127 x 45 x 85/215	
Вес, г	100	100
Степень защиты	IP:	20
Напряжение питания, В	Для модификации:	
	со встроенным преобразов	ателем питания:
	10 – 30 постоянного;	
	12 – 35 переменного.	
	без преобразователя:	
	5 постоянного	
Собственный потребляемая	5	
мощность, Вт, не более	_	,

Таблица 1. Основные характеристики

Условия эксплуатации:

- нормальные условия эксплуатации устанавливаемого помещении оборудования, УХЛ4;
- температура окружающего воздуха: +5..+40 °C;
- высота над уровнем моря: не более 1000 м;
- окружающая среда: Отсутствие пыли, дыма, коррозионных или пожароопасных газов и паров, а также соли (чистый промышленный воздух);
- влажность: относительная влажность не более 95 %.

1. Описание устройства

Приборное исполнение

В приборном исполнении устройство выполнено в экструдированном алюминиевом корпусе с пластиковыми торцевыми заглушками. Маркировка органов индикации и разъемов осуществляется с помощью торцевых алюминиевых пластин с шелкографией.

Без опций сети приборное исполнение устройства имеет следующие общий вид и габаритные размеры:

Рисунок 1-1. Общий вид приборное исполнение без опций сети

С помощью разъема X1 (micro USB B) осуществляется связь с устройством через USB интерфейс, а также может осуществляться питание устройства с подключенным к нему датчиком, если это позволяют параметры используемого USB порта.

Внешние питание устройства, интерфейс RS-485 и внешние входы/выходы подключаются к разъему X2 (DBH15).

Преобразователь подключается к разъему X3 (DB9).

С опциями сети (Ethernet/радио) приборное исполнение устройства имеет следующие общий вид и габаритные размеры:

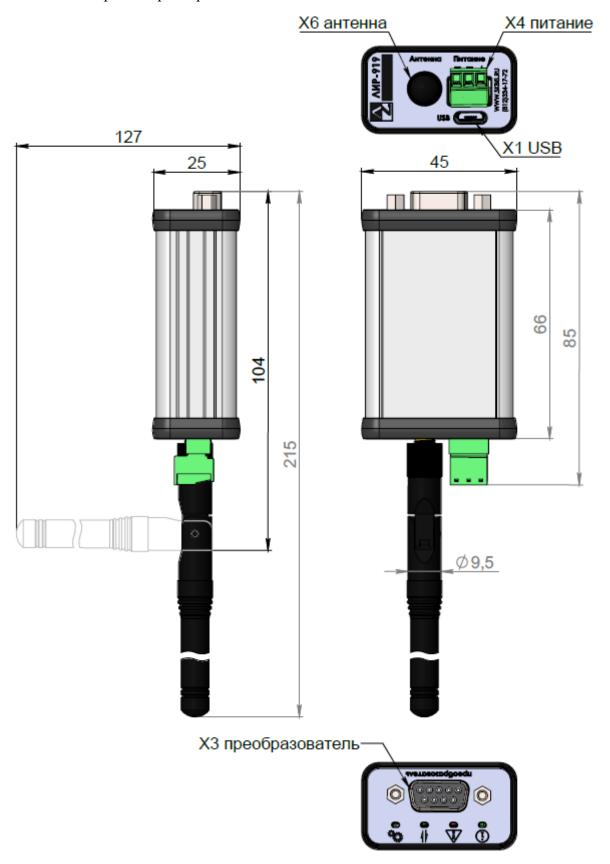


Рисунок 1-2. Общий вид приборное исполнение с опциями связи радио

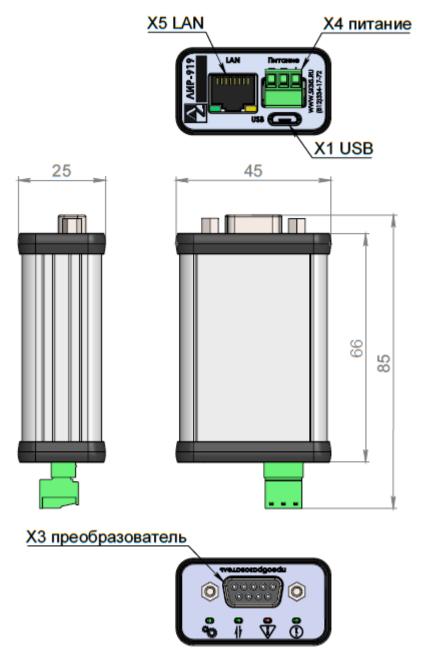


Рисунок 1-3. Общий вид приборное исполнение с опцией связи Ethernet

С помощью разъема X1 (micro USB B) осуществляется связь с устройством через USB интерфейс, а также может осуществляться питание устройства с подключенным к нему датчиком, если это позволяют параметры используемого USB порта.

Внешние питание устройства подается через разъемное клеммное соединение "Питание" X4.

Разъем "LAN" X5 служит для подключения устройства к локальной сети Ethernet.

Антенна радиоканала подключается к разъему Х6.

Преобразователь и интерфейс RS-485 подключаются к разъему X3 (DB9). В данном исполнении устройства одновременное использование преобразователя и интерфейса RS-485 невозможно.

Исполнение на din рейку

Исполнение на din-рейку выполнено в стандартном вертикальном пластиковом корпусе шириной 23 мм. Маркировка органов индикации и разъемов осуществляется с помощью торцевых алюминиевых пластин с шелкографией.

В соответствии с модификацией устройства, часть разъемов может отсутствовать. В местах разъемов, не подлежащих установке, шильд не имеет соответствующих отверстий и маркировки.

Ниже приведен общий вид и габаритные размеры для полной модификации:

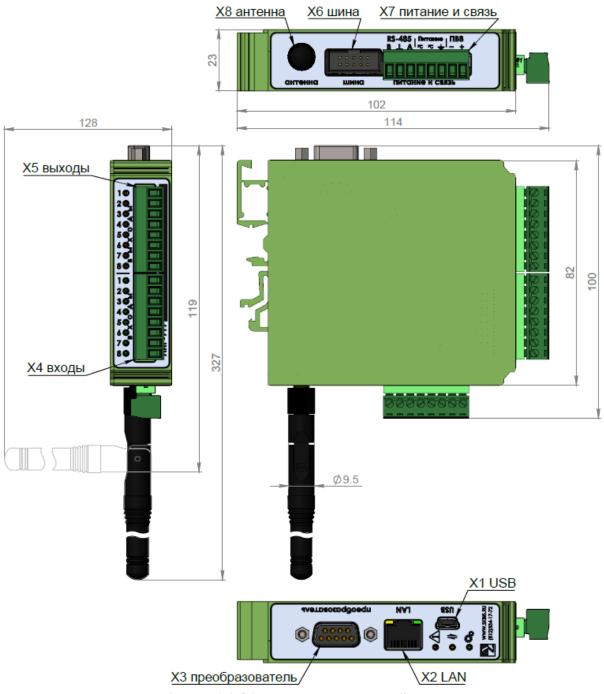


Рисунок 1-4. Общий вид в исполнении на din-рейку

С помощью разъема X1 (mini USB B) осуществляется связь с устройством через USB интерфейс, а также может осуществляться питание устройства с подключенным к нему датчиком, если это позволяют параметры используемого USB порта.

OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

Разъем X2 (RJ-45) служит для подключения устройства к локальной сети Ethernet.

Преобразователь подключается к разъему X3 (DB9).

Разъемные клеммные колодки X4 (входы) и X5 (выходы) служат для подключения внешних дискретных сигналов.

Разъемная клемная колодка Х7 (питание и связь) служит для подачи на устройство внешнего питания и подключения интерфейса RS-485. Так же на эту колодку в модификации со встроенным преобразователем питания выведены общие точки входов/выходов, а в модификации без преобразователя – питание логики и общие точки входов/выходов.

Для удобства объединения устройств в сеть, разъем X7 продублирован разъемом X6 (IDC10). Он позволяет соединить с помощью плоского шлейфа несколько устройств в сеть (RS-485), а также через него передается напряжение питания (ток не более 2A).

К разъему X8 (SMA) подключается антенна.

1.1. Органы управления

Устройство не имеет органов управления.

1.2. Органы индикации

Приборное исполнение

В качестве органов индикации используются 4 светодиода, расположенные на торце устройства:

Рисунок 1.2-1. Органы индикации приборное исполнение

Назначение светодиодов (слева направо):

- > пользовательский светодиод: пользователь может назначить необходимый ему функциональный сигнал на этот светодиод (светодиод находится в регистре выходов устройства с индексом «4»);
- > светодиод ошибки датчика: горит, когда происходят ошибки чтения датчика либо сбилась позиция, повреждение линии связи с датчиком или повреждена таблица коррекции;
- > светодиод активности внешнего соединения: вспыхивает на 50 мс при каждом обращении к устройству по линии связи USB/RS-485;
- > светодиод работы устройства: отображает состояние настроек устройства. Когда светодиод горит – настройки в норме, когда мигает – настройки повреждены;

В режиме обновления прошивки, горят все светодиоды за исключением светодиода работы устройства.

OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33

Исполнение на din рейку

Устройство имеет три светодиода, отвечающих за индикацию состояния системы:

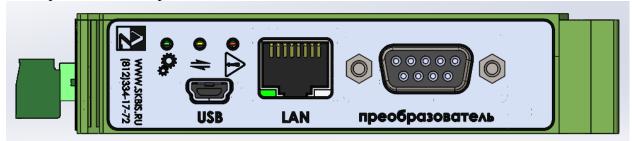


Рисунок 1.2-2. Органы индикации в исполнении на din-рейку (состояния устройства)

Назначение светодиодов (слева направо):

- > светодиод работы устройства: отображает состояние настроек устройства. Когда светодиод горит – настройки в норме, когда мигает – настройки повреждены;
- > светодиод активности внешнего соединения: вспыхивает на 50 мс при каждом обращении к устройству по линии связи USB/RS-485;
- > светодиод ошибки датчика: горит, когда происходят ошибки чтения датчика либо сбилась позиция, повреждение линии связи с датчиком, повреждена таблица коррекции или повреждены сохраненные в энергонезависимой памяти смещения абсолютных систем координат.

В режиме обновления прошивки, горят все светодиоды за исключением светодиода работы устройства.

Светодиоды, расположенные на LAN разъеме устройство показывают состояние и активность Ethernet соединения.

В модификации с внешними дискретными сигналами на торце устройства с клемными колодками для их подключения располагаются светодиоды индикации состояния соответствующего входа/выхода:

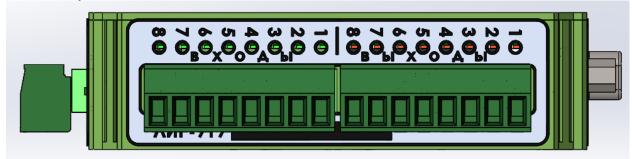
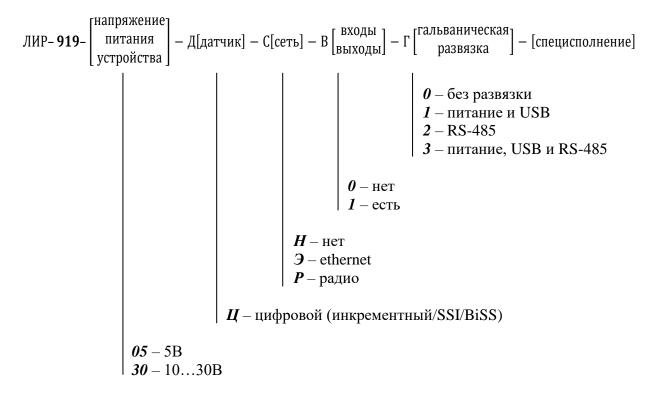



Рисунок 1.2-3. Органы индикации в исполнении на din-рейку (входы/выходы)

ел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

2. Код заказа

Код заказа для приборного исполнения:

В любой модификации устройство имеет интерфейсы USB и RS-485.

Входы/выходы всегда имеют гальваническую развязку.

В модификациях с опциями сети одновременное использование датчика и интерфейса RS-485 невозможно, так как они выведены на один разъем. Модификация с опциями сети не могут иметь входов/выходов и гальваническую развязку интерфейса RS-485.

Для приборного исполнения серийно изготавливаются следующие модификации интерфейсов:

```
ЛИР-919-05-ДЦ-СН-В0-Г0 датчик 

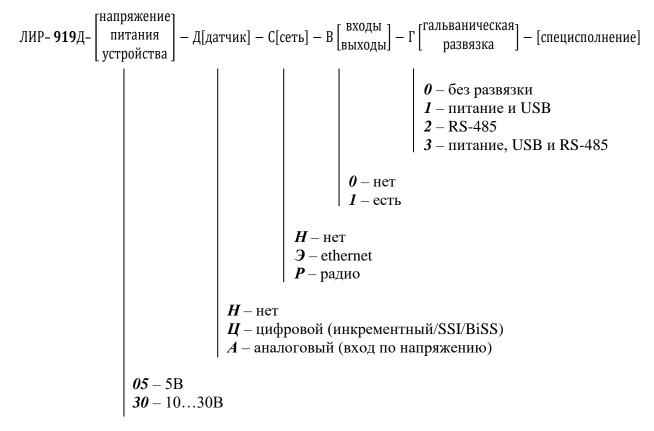
□ USB/RS485

ЛИР-919-30-ДЦ-СН-В1-Г3 датчик 

□ USB/RS485, входы/выходы, полная гальваническая изоляция датчик 

□ USB/RS485/Ethernet, конвертер Modbus Ethernet 

□ RS-485


Датчик 

□ USB/RS485/Ethernet, конвертер Modbus Ethernet 

□ RS-485, с изоляцией питания
```

Остальные модификации должны быть согласованы перед заказом.

Код заказа для исполнения на din рейку:

В любой модификации устройство имеет интерфейсы USB и RS-485. Входы/выходы всегда имеют гальваническую развязку.

Для исполнения на din рейку серийно изготавливаются следующие модификации интерфейсов:

Остальные модификации должны быть согласованы перед заказом.

3. Работа с устройством

ЛИР-919 поддерживает работу с специализированным протоколом связи, который обеспечивает доступ к следующим модулям внутри устройства:

Название	ЛИР	ЛИР	
модуля/ подмодуля	- 919	- 919Д	Параметры
Системный	✓	✓	Буфер на 1000 позиций
Датчик	✓	ДЦ/ДА	Таблица коррекции координаты: 100 точек. Допускаемая коррекция ±127 дискрет.
Инкрементный	✓	ДЦ	
SSI	✓	ДЦ	
BISS	√	дц	
Аналоговый		ДА	
RS-485	√	✓	
Modbus RTU	✓	✓	
СППУ	✓	✓	Синхронная работа до 10 осей.
Протокол ЛИР- 915/6	СН	✓	
Входы/выходы	✓	B1	ЛИР-919: 4 входа/4 выхода + светодиод ЛИР-919Д: 8 входов/8 выходов
Виртуальные входы/выходы	✓	✓	8 логических входных и выходных ячеек, 4 таймера
Функциональные сигналы	✓	✓	Количество функций байпаса (соединяют виртуальные входы и выходы): 4.
Позиционировани е	√	ДЦ/ДА	
Дискретные выходы	√	ДЦ/ДА	
Обработчик g кодов	√	√	Максимальное количество программ: 4. Максимальный уровень вложенности: 4. Максимальное количество переменных: 4. Размер памяти под программы: 8192 байта.
Зоны	✓	✓	Количество зон: 4.
Математический	✓	✓	Количество результатов: 4
Ethernet		СЭ	
Modbus RTU over TCP/IP		СЭ	

ОАО «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

Modbus TCP/IP	СЭ	

Таблица 3-1. Список модулей

Цветом в таблице обозначено:

Модуль – название модуля.

Подмодуль – название подмодуля.

В столбце ЛИР-919 и ЛИР-919Д показано наличие данного модуля/подмодуля в устройстве:

✓ – есть во всех вариантах;

XX – есть в модификации;

- отсутствует.

Более подробно о возможностях, настройках и взаимодействии с модулями можно ознакомиться в описании протокола взаимодействия.

4. Регистры Modbus RTU.

При сконфигурированном модуле RS-485 на работу в режиме «ведомого modbus» пользователю открывается доступ к основным параметрам через стандартные регистры протокола Modbus RTU.

Список лоступных регистров

		лных регистров		
Адрес	Биты	Описание		
		Регистры ввода (input registers)		
		подключенного датчика. При чтении этого регистра происходит		
	защелк	ивание текущей координаты системы (опрос датчика не производится).		
	Если м	одуль датчика выключен – значение регистра 0xFFFF.		
	0	Инкрементные – неисправность линии А. Абсолютные – бит ошибки 0,		
		8*. Аналоговые – выход за нижний предел измерения.		
	1	Инкрементные – неисправность линии В. Абсолютные – бит ошибки 1,		
		9*.		
		Аналоговые – выход за верхний предел измерения.		
	2	Инкрементные – неисправность линии R. Абсолютные – бит ошибки 2,		
		10*.		
0x00		Аналоговые – зарезервировано.		
UXUU	37	Инкрементные – зарезервировано. Абсолютные – бит ошибки 37,		
		1115*.		
		Аналоговые – зарезервировано.		
	8	Ошибка датчика (любая ошибка инкрементного датчика, неверный		
		формат сообщения/не сошлась контрольная сумма абсолютного		
		датчика, аналоговый датчик не подключен).		
	9	Референтная метка не захвачена.		
	10	Таблица коррекции повреждена.		
	11	Процесс поиска референтной метки.		
	12	Смещение осей координат повреждено.		
	1315	Код текущей операции подмодуля датчика.		
0x01	Коорди	ната датчика (младшие байты вперед). Возможно чтение только		
	_	ших регистров, вмещающих разрядность подключенного датчика.		
0x04				
		ние входов устройства.		
0x05	0n	Входы устройства (n – количество входов устройства).		
	n15	Зарезервировано.		
		ние виртуальных Modbus выходов устройства (для чтения функциональных		
0x06	сигналов).			
	015	Выходы 015		
		подключенного датчика. Чтение этого регистра позволяет получить		
		нутую при предыдущем Modbus запросе позицию.		
	0	Инкрементные – неисправность линии А. Абсолютные – бит ошибки 0,		
		8*. Аналоговые – выход за нижний предел измерения.		
0x07	1	Инкрементные – неисправность линии В. Абсолютные – бит ошибки 1,		
		9*.		
		Аналоговые – выход за верхний предел измерения.		
	2	Инкрементные – неисправность линии R. Абсолютные – бит ошибки 2,		
		10*.		
		Аналоговые – зарезервировано.		

	2.7	N
	37	Инкрементные – зарезервировано. Абсолютные – бит ошибки 37,
		1115*.
	8	Аналоговые – зарезервировано.
	8	Ошибка датчика (любая ошибка инкрементного датчика, неверный
		формат сообщения/не сошлась контрольная сумма абсолютного
		датчика, аналоговый датчик не подключен).
	9	Референтная метка не захвачена.
	10	Таблица коррекции повреждена.
	11	Процесс поиска референтной метки.
	12	Смещение осей координат повреждено.
A	1315	Код текущей операции подмодуля датчика.
Адрес	Биты	Описание
0x08	Коорди	ната датчика (младшие байты вперед). Возможно чтение только
0x0B	младші	их регистров, вмещающих разрядность подключенного датчика.
0x0C	Zananar	овировано
0x0F	Japeser	овировано
OXOI	Статус	подключенного датчика. При чтении этого регистра происходит опрос
	_	а и защелкивание его координаты. Если модуль датчика выключен –
		ие регистра 0xFFFF.
	0	Инкрементные – неисправность линии А. Абсолютные – бит ошибки 0,
		8*. Аналоговые – выход за нижний предел измерения.
	1	Инкрементные – неисправность линии В. Абсолютные – бит ошибки 1,
	_	9*.
		Аналоговые – выход за верхний предел измерения.
	2	Инкрементные – неисправность линии R. Абсолютные – бит ошибки 2,
	_	10*.
		Аналоговые – зарезервировано.
0x10	37	Инкрементные – зарезервировано. Абсолютные – бит ошибки 37,
		1115*.
		Аналоговые – зарезервировано.
	8	Ошибка датчика (любая ошибка инкрементного датчика, неверный
		формат сообщения/не сошлась контрольная сумма абсолютного
		датчика, аналоговый датчик не подключен).
	9	Референтная метка не захвачена.
	10	Таблица коррекции повреждена.
	11	Процесс поиска референтной метки.
	12	Смещение осей координат повреждено.
	1315	Код текущей операции подмодуля датчика.
0x11	Коорди	ната датчика (младшие байты вперед). Возможно чтение только
_	-	их регистров, вмещающих разрядность подключенного датчика.
0x14		
0.1-		ние входов устройства.
0x15	0n	Входы устройства (n – количество входов устройства).
	n15	Зарезервировано.
		ние виртуальных Modbus выходов устройства (для чтения
0x16		юнальных сигналов).
	015	Выходы 015

	Статус	подключенного датчика. Чтение этого регистра позволяет получить
	защелк	нутую при предыдущем Modbus запросе позицию.
	0	Инкрементные – неисправность линии А. Абсолютные – бит ошибки 0,
		8*. Аналоговые – выход за нижний предел измерения.
	1	Инкрементные – неисправность линии В. Абсолютные – бит ошибки 1,
		9*.
		Аналоговые – выход за верхний предел измерения.
	2	Инкрементные – неисправность линии R. Абсолютные – бит ошибки 2,
		10*.
		Аналоговые – зарезервировано.
0x17	37	Инкрементные – зарезервировано. Абсолютные – бит ошибки 37,
		1115*.
		Аналоговые – зарезервировано.
	8	Ошибка датчика (любая ошибка инкрементного датчика, неверный
		формат сообщения/не сошлась контрольная сумма абсолютного
		датчика, аналоговый датчик не подключен).
	9	Референтная метка не захвачена.
	10	Таблица коррекции повреждена.
	11	Процесс поиска референтной метки.
	12	Смещение осей координат повреждено.
	1315	Код текущей операции подмодуля датчика.

Адрес	Биты	Описание				
0x18 -	Коорди	Координата датчика (младшие байты вперед). Возможно чтение только младших				
0x1B	_	регистров, вмещающих разрядность подключенного датчика.				
0x1C						
_	Зарезервировано					
0x1F	1 1	•				
	Состоя	ние модулей устройства				
0x20	0n	Состояние (0 – выключен, 1 - включен). п – количество модулей в				
OAZO		устройстве.				
	n15	Зарезервировано				
	Состоя	ние настроек модулей устройства (0 – норма, 1 – повреждены):				
0x21	0n	Состояние (0 – норма, 1 – повреждены). п – количество модулей в				
UALI		устройстве.				
	n15	Зарезервировано				
0x22 -	3aneser	рвировано				
0x9F						
		ние буфера координат:				
0x100		Количество записей в буфере.				
	_	15 Флаг переполнения буфера				
0x101		Запись буфера FIFO**: [0x101] статус датчика, [0x102 – 0x105] координата				
		а. Если в буфере нет записей – статус принимает значение 0xFFFF. При				
0x105	чтении	регистра статуса запись удаляется из буфера.				
0x106	_					
- 170	Повтор	ение групп регистров, обеспечивающих доступ к записям буфера FIFO.				
0x178	n	6 1 PROJEK FO 1501				
0x179		буфера FIFO**: [0х179] статус датчика, [0х17A – 0х17D] координата				
017D		датчика. Если в буфере нет записей – статус принимает значение 0xFFFF. При				
0x17D	чтении	регистра статуса запись удаляется из буфера.				
0x17E						
0*:204	Зарезервировано					
0x204	Резулт	тат выполнения команды модулем позиционирования:				
		- выполнения команды модулем позиционирования выполняется перемещение,				
		выполняется перемещение,выполняется поиск референтной метки,				
		- выполняется ручное перемещение,				
		- задание выполнено,				
		- задание выполнено, - ошибка позиционирования,				
		– ошибка позиционирования, – ошибка датчика,				
0x205		- ошиока датчика,- наезд на концевой выключатель,				
		– наезд на концевой выключатель;– референтная метка не захвачена,				
		прервано командой остановки,				
		 – аварийно остановлено из-за движения в противоположном направлении, 				
		 аварийно остановлено из-за отсутствия движения, 				
		 остановлено из-за внутренней ошибки, 				
		– модуль выключен.				
		r v				

Адрес	Биты	Описание			
		Регистры хранения (holding registers)			
0x00 - 0x03	Регистр	ры совместимости с интерфейсами ЛИР-915 / ЛИР-916			
0x04	Зарезер	Зарезервировано			
	Выходы устройства				
0x05	0n	Выходы устройства. п – число выходов.			
	n15	Зарезервировано			
0x06	Состоя	ние виртуальные Modbus входов устройства:			
UXUO	015	Вход 015			
0x07 – 0x19F	Зарезер	овировано			
0x200		зуется для задания координаты, в которую требуется совершить			
_		щение для модуля позиционирования (младший регистр первый),			
0x203	аргуме				
0x204		зуется для задания ограничения скорости перемещения для модуля			
0/1201		онирования, аргумент 2.			
		ца модулю позиционирования:			
		ск референтной метки,			
0.205	_	еместится в заданную координату (аргумент 1) с максимальной			
0x205	скорост				
	_	2 – переместиться в заданную координату (аргумент 1) со скоростью, заданной			
	аргуме				
0x205	3 – 0018	3 – остановить перемещение.			
0x203	Запеденнионало				
0x100F	Зарезервировано.				
OATOOT	Статус	подключенного датчика. При чтении этого регистра происходит			
	•	ивание текущей координаты системы в CO G52 (опрос датчика не			
		одится). Если модуль датчика выключен – значение регистра 0xFFFF.			
	0	Инкрементные – неисправность линии А. Абсолютные – бит ошибки 0,			
		8*. Аналоговые – выход за нижний предел измерения.			
	1	Инкрементные – неисправность линии В. Абсолютные – бит ошибки 1,			
		9*.			
		Аналоговые – выход за верхний предел измерения.			
	2	Инкрементные – неисправность линии R. Абсолютные – бит ошибки 2, 10*.			
0 1010		Аналоговые – зарезервировано.			
0x1010	37	Инкрементные – зарезервировано. Абсолютные – бит ошибки 37,			
		1115*.			
		Аналоговые – зарезервировано.			
	8	Ошибка датчика (любая ошибка инкрементного датчика, неверный			
		формат сообщения/не сошлась контрольная сумма абсолютного датчика,			
	_	аналоговый датчик не подключен).			
	9	Референтная метка не захвачена.			
	10	Таблица коррекции повреждена.			
	11	Процесс поиска референтной метки.			
	12	Смещение осей координат повреждено.			
	1315	Код текущей операции подмодуля датчика.			

	Позиция датчика в CO G52 (младшие байты вперед). Возможно чтение только
0x1011	младших регистров, вмещающих разрядность подключенного датчика.
_	Для установки смещения необходимо произвести последовательную запись:
0x1014	- в регистр статуса 0x1010 записать ключ 0xA48D;
	- в регистры позиции записать требуемую позицию.
0x1015	
_	Зарезервировано.
0x200F	

Адрес	Биты	Описание		
	Статус	подключенного датчика. При чтении этого регистра происходит		
	защелк	ивание текущей координаты системы в СО G53 (опрос датчика не		
	произв	одится). Если модуль датчика выключен – значение регистра 0xFFFF.		
	0	Инкрементные – неисправность линии А. Абсолютные – бит ошибки 0,		
		8*. Аналоговые – выход за нижний предел измерения.		
	1	Инкрементные – неисправность линии В. Абсолютные – бит ошибки 1,		
		9*.		
		Аналоговые – выход за верхний предел измерения.		
	2	Инкрементные – неисправность линии R. Абсолютные – бит ошибки 2,		
		10*.		
0x2010	2.5	Аналоговые – зарезервировано.		
01122020	37	Инкрементные – зарезервировано. Абсолютные – бит ошибки 37,		
		1115*.		
	0	Аналоговые – зарезервировано.		
	8	Ошибка датчика (любая ошибка инкрементного датчика, неверный		
		формат сообщения/не сошлась контрольная сумма абсолютного датчика, аналоговый датчик не подключен).		
	9			
	10	Референтная метка не захвачена.		
	11	Таблица коррекции повреждена. Процесс поиска референтной метки.		
	12	Смещение осей координат повреждено.		
	1315			
		15 Код текущей операции подмодуля датчика. виция датчика в СО G53 (младшие байты вперед). Возможно чтение только		
		их регистров, вмещающих разрядность подключенного датчика.		
0x2011	Установка смещения возможна только однократно на один сеанс работы			
_	устрой			
0x2014	• •	гановки смещения необходимо произвести последовательную запись:		
		егистр статуса 0x2010 записать ключ 0x4A8D;		
		стры позиции записать требуемую позицию.		
0x2015				
_	Зарезер	ервировано.		
0x300F				
	-	подключенного датчика. При чтении этого регистра происходит		
		ивание текущей координаты системы в СО G54 (опрос датчика не		
		одится). Если модуль датчика выключен – значение регистра 0xFFFF.		
	0	Инкрементные – неисправность линии А. Абсолютные – бит ошибки 0,		
	1	8*. Аналоговые – выход за нижний предел измерения.		
	1	Инкрементные – неисправность линии В. Абсолютные – бит ошибки 1,		
		9*.		
0x3010	2	Аналоговые – выход за верхний предел измерения. Инкрементные – неисправность линии R. Абсолютные – бит ошибки 2,		
UASUIU	<u> </u>	инкрементные – неисправность линии К. Аосолютные – оит ошиоки 2, 10*.		
		Аналоговые – зарезервировано.		
	37	Инкрементные – зарезервировано. Абсолютные – бит ошибки 37,		
	3,	1115*.		
		Аналоговые – зарезервировано.		
	8	Ошибка датчика (любая ошибка инкрементного датчика, неверный		
		формат сообщения/не сошлась контрольная сумма абсолютного датчика,		
		аналоговый датчик не подключен).		
<u> </u>				

	9	Референтная метка не захвачена.		
	10	Таблица коррекции повреждена.		
	11	Процесс поиска референтной метки.		
	12	Смещение осей координат повреждено.		
	1315	Код текущей операции подмодуля датчика.		
	Позици	Позиция датчика в CO G54 (младшие байты вперед). Возможно чтение только		
0x3011	младші	младших регистров, вмещающих разрядность подключенного датчика.		
_	Для уст	Для установки смещения необходимо произвести последовательную запись:		
0x3014	- в регистр статуса 0x3010 записать ключ 0xA48D;			
	- в регистры позиции записать требуемую позицию.			

OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

Дискретные входы (discrete inputs)	
0x00	Состояние референтной метки (1 – захвачена, 0 – не захвачена)
0x01 - 0x0F	Зарезервировано.
0x10 - 0x1F	Состояние входов устройства. Состояние входов устройства заполняется с младшего бита. Биты, порядковый номер которых больше количества входов устройства всегда читаются как "0".
0x20 - 0x2F	Состояние виртуальных Modbus выходов устройства.
Регистры флагов (coils)	
0x00	Запуск поиска референтной метки. Процесс запускается записью "1". Запись "0" не производит никаких действий. Регистр читается всегда как "0".
0x01	Остановка поиска референтной метки. Процесс останавливается записью "1". Запись "0" не производит никаких действий. Регистр читается всегда как "0".
0x02	Обнулить позицию СО G52 путем установки смещения. Команда выполняется записью "1". Запись "0" не производит никаких действий. Регистр читается всегда как "0".
0x03	Запись "1" сохраняет текущую позицию СО G53 во встроенный буфер устройства. Запись "0" не производит никаких действий. Регистр читается всегда как "0".
0x04	При записи "1" происходит сохранение текущей позиции в энергонезависимую память устройства для последующего её восстановления при следующем сеансе работы. Запись "0" не производит никаких действий. Регистр читается всегда как "0".
0x05	При записи "1" происходит восстановление сохраненной ранее позиции из энергонезависимой памяти устройства. При этом, восстановить позицию можно только один раз. Если восстановление позиции невозможно, то устанавливается бит "ошибка датчика" в статусе подключенного датчика. Запись "0" не производит никаких действий. Регистр читается всегда как "0".
0x06 – 0x0F	Зарезервировано.
0x10 - 0x1F	Состояние выходов устройства. Состояние выходов устройства заполняется с младшего бита. Биты, порядковый номер которых больше количества выходов устройства всегда читаются как "0". Запись в них не производит никаких действий.
0x20 - 0x2F	Состояние виртуальных Modbus входов устройства.

Таблица 4-1. Список регистров Modbus RTU

- * В абсолютных датчиках доступны биты ошибки с 0 по 7. Если датчик имеет меньше 8 бит ошибки, то в неиспользуемые биты регистра передаётся 0. Если датчик имеет от 8 до 16 бит ошибки, то биты старше 8 объединяются по лог. ИЛИ с младшими битами.
- ** При чтении любой группы ячеек будет считана первая запись буфера FIFO. При последовательном чтении групп, либо при повторных чтениях любой группы буфер FIFO будет последовательно считываться. Элемент считывается и удаляется из буфера в момент чтения слова статуса. При чтении только части группы, отвечающей за координату датчика, обращение к буферу FIFO не происходит. Устройство возвращает координату, считанную из буфера FIFO в прошлый раз.

Регистры хранения 0x1011 - 0x1014, 0x2011 - 0x2014 и 0x3011 - 0x3014 дают доступ к одной и той же области памяти устройства. Система отсчета позиции, которая в них защелкнется выбирается предварительным чтением регистров статуса 0х1010 (для G52), 0х2010 (для G53) и 0х3010 (для G54).

5. Гальваническая развязка

Модули интерфейса в модификация с параметром Г отличным от нуля имеют встроенную гальваническую развязку. Ниже приведены структурные схемы модулей интерфейса на которых:

- различным цветом отображены гальванически развязанные цепи;
- разной толщиной отмечен тип цепей (толстые шины питания, средние шины сигнальные, тонкие отдельные соединения);

Приведены структурные схемы для полных модификаций. В неполных модификациях часть блоков отсутствует в соответствии с заказом. В модификациях без гальванической развязки, вместо отсутствующего блока устанавливается перемычка. Если для блока отсутствует гальваническая развязка, то RC цепочка в данном блоке не устанавливается.

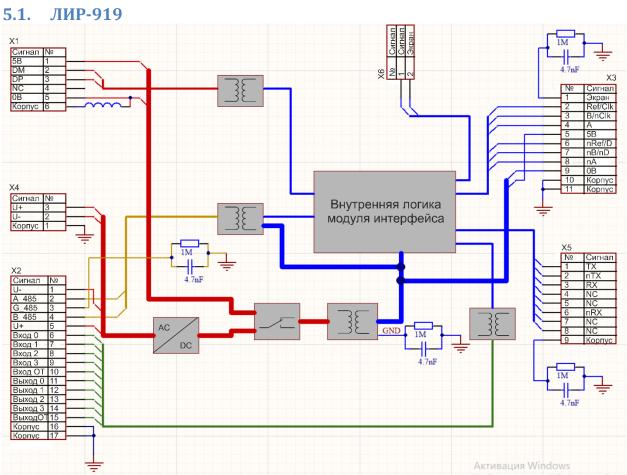


Рисунок 5.1-1 Структурная схема гальванической развязки модуля интерфейсаЛИР-919

Гальваническая развязка питания подразумевает, что внешнее питание с разъемов X2/X4 и USB порта X1 гальванически развязано от питания внутренней логики модуля интерфейса. При этом питание на разъемах X1 и X2/X4 гальванически связано.

Гальваническая развязка USB подразумевает гальваническую развязку сигнальных линий USB интерфейса.

Гальваническая развязка RS-485 подразумевает гальваническую развязку сигналов A и B, и общего провода RS-485 от устройства.

Питание внутренней логики модуля интерфейса связано с питанием преобразователя.

Сигналы внутренней логики гальванически связаны с сигналами преобразователя.

Ethernet всегда гальванически развязан за счет трансформаторов в разъеме.

Входы/выходы всегда гальванически развязаны.

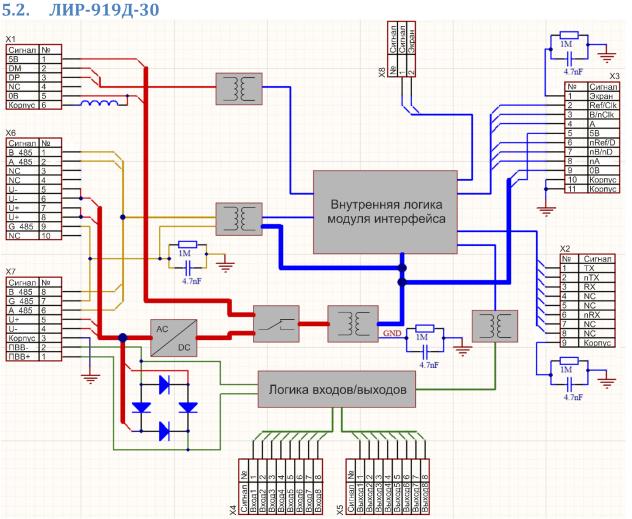


Рисунок 5.2-1 Структурная схема гальванической развязки модуля интерфейса ЛИР-919Д-30

Гальваническая развязка питания подразумевает, что внешнее питание с разъемов X6/X7 и USB порта X1 гальванически развязано от питания внутренней логики модуля интерфейса. При этом питание на разъемах X1 и X6/X7 гальванически связано.

Гальваническая развязка USB подразумевает гальваническую развязку сигнальных линий USB интерфейса.

Гальваническая развязка RS-485 подразумевает гальваническую развязку сигналов A и В, и общего провода RS-485 от устройства.

Питание внутренней логики модуля интерфейса связано с питанием преобразователя.

Сигналы внутренней логики гальванически связаны с сигналами преобразователя.

Ethernet всегда гальванически развязан за счет трансформаторов в разъеме.

Входы/выходы всегда гальванически развязаны по сигнальным линиям и гальванически связаны с питанием устройства.

. ОАО «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33

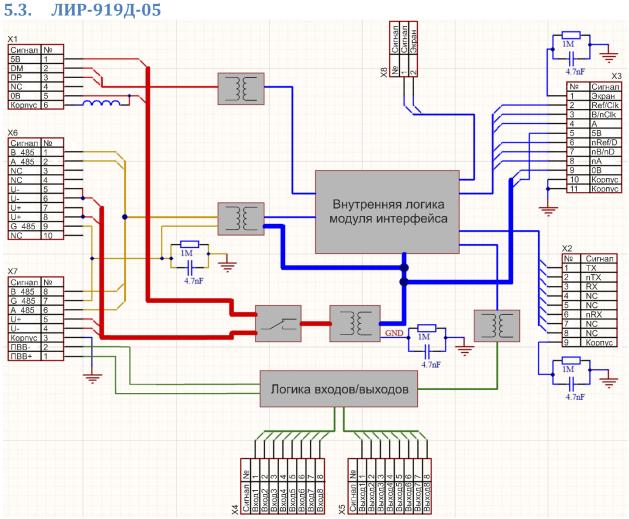


Рисунок 5.3-1 Структурная схема гальванической развязки модуля интерфейса ЛИР-919Д-05

Гальваническая развязка питания подразумевает, что внешнее питание с разъемов X6/X7 и USB порта X1 гальванически развязано от питания внутренней логики модуля интерфейса. При этом питание на разъемах X1 и X6/X7 гальванически связано.

Гальваническая развязка USB подразумевает гальваническую развязку сигнальных линий USB интерфейса.

Гальваническая развязка RS-485 подразумевает гальваническую развязку сигналов A и В, и общего провода RS-485 от устройства.

Питание внутренней логики модуля интерфейса связано с питанием преобразователя.

Сигналы внутренней логики гальванически связаны с сигналами преобразователя.

Ethernet всегда гальванически развязан за счет трансформаторов в разъеме.

Входы/выходы всегда гальванически развязаны.

6. Подключение устройства

Подключение преобразователя перемещений

Инкрементные:

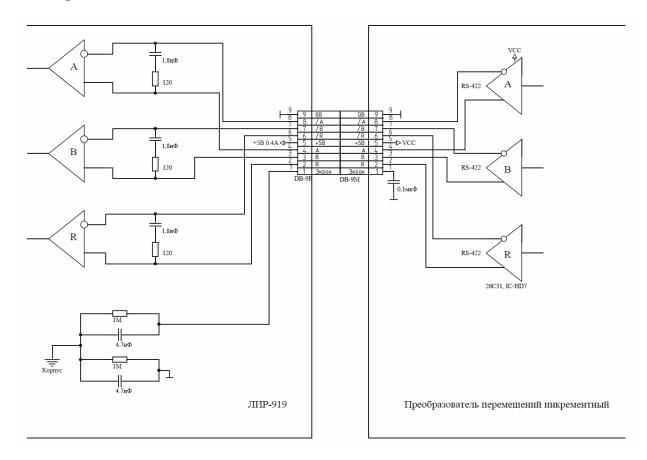


Рисунок 6.1-1 Подключение преобразователя перемещений инкрементного

Интерфейс преобразователя перемещений гальванически развязан от цепи питания и интерфейса связи модуля интерфейса. Мощность гальванически развязанного источника питания для преобразователя перемещений составляет 2Вт, что позволяет подключать потребления преобразователи током ДО 400 мA. Напряжение нестабилизированное и составляет 5В. Рекомендуется для преобразователей с током потребления от 200 мА использовать питание ЛИР-919 от внешнего источника.

Входные цепи имеют защиту от электростатического разряда (ESD) 15кВ на модели человеческого тела ($100 \text{ n}\Phi$ через резистор 1.5 кOm).

Максимально допустимая разность потенциалов на входных цепях относительно цепи (Common-mode) составляет ± 10 В. Минимальная дифференциальное входное обеспечивающее работу без ошибки, составляет 0.95B.Ошибка устанавливается при обрыве, коротком замыкании линии или при превышении допустимой разности потенциалов на входных цепях.

Вход сигнала референтной метки (R) у преобразователей, не имеющих сигнала референтной метки, рекомендовано подключить следующим образом: цепь R подключить к 0B, цепь /R – к питанию +5B. Так же возможно отключить обработку ошибки линии R в настройках ЛИР-919.

Цепь экрана в преобразователях СКБ ИС соединена с цепью 0В через конденсатор 0,1 мкФ и с корпусом напрямую. В ЛИР-919 цепь экрана соединена с корпусом через цепь уравнивания потенциалов, содержащую конденсатор 4,7 мкФ и резистор 1 МОм. OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

Максимальная разность потенциалов в цепи экрана относительно других контактов ЛИР-919 составляет 500В. Допускается соединять цепь экрана и цепь 0В напрямую на стороне преобразователя перемещений.

Абсолютные:

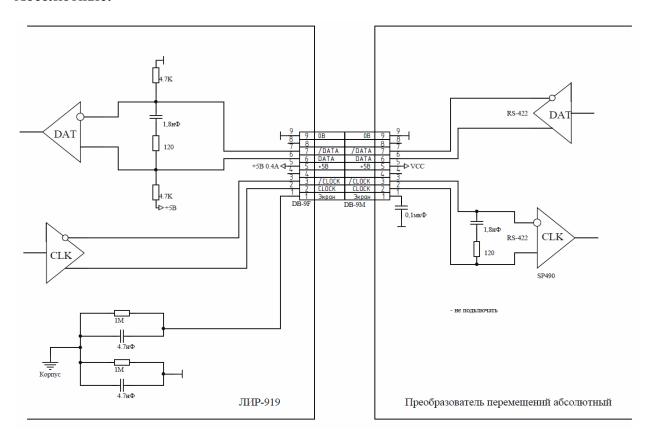


Рисунок 6.1-2 Подключение преобразователя перемещений абсолютного

Рекомендации по питанию и подключению экрана, ESD защита такие же, как и в предыдущем параграфе.

Переключение на интерфейс связи с преобразователями абсолютного перемещения происходит с помощью реле, изменяющего назначение выводов разъёма DB-9. Выводы 4 и 8 разъёма остаются подключенными к внутренним цепям ЛИР-919, поэтому запрещается подавать на них какие-либо сигналы.

Входная цепь линии DATA подтянута к цепи питания, в результате обрыв линии не диагностируется. Для диагностики подключения преобразователя используется программное определение формата пакета, фиксирующее логические уровни в определённые фазы обмена по протоколу.

Выходная линия сигнала CLOCK имеет дифференциальное напряжение не менее 2B на нагрузке 100Ом. Ток короткого замыкания 250 мА.

При работе по BiSS-C интерфейсу сигналы CLOCK заменяются на MA; DATA – на SL.

Несмотря на то, что модуль интерфейса рассчитан на работу с преобразователями абсолютного перемещения с напряжением питания 5B, также могут быть подключены преобразователи с питанием, превышающим 5B. Главным требованием при этом является уровень сигналов — TTL. Ниже приведены схемы подключения таких преобразователей на примере ЛИР-919Д для модификаций с питанием модуля интерфейса 5B и 10..30B:

. ОАО «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

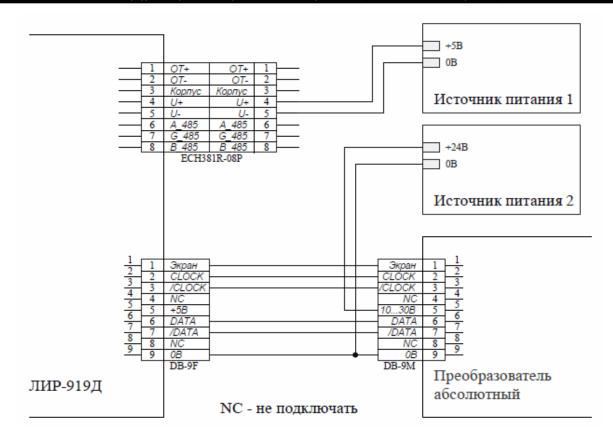


Рисунок 6.1-3 Подключение преобразователя перемещений абсолютного с питанием 10..30В к модулю интерфейса с питанием 5В

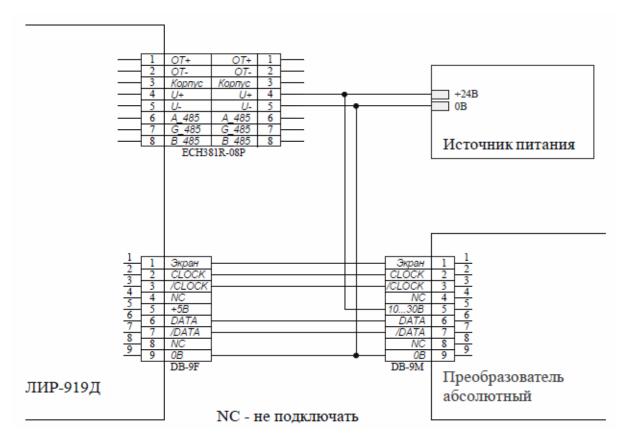


Рисунок 6.1-4. Подключение преобразователя перемещений абсолютного с питанием 10..30В к модулю интерфейса с питанием 10..30В

195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33

Подключение аналогового датчика 6.2.

Аналоговым датчиком является датчик давления, потенциометр и другие виды преобразователей физических величин, имеющие вид выходного сигнала – напряжение 0..5В либо 1..5В.

Напряжение питания аналогового датчика составляет 5В. При подключении датчика с более высоким напряжением питания – датчик необходимо питать от внешнего источника.

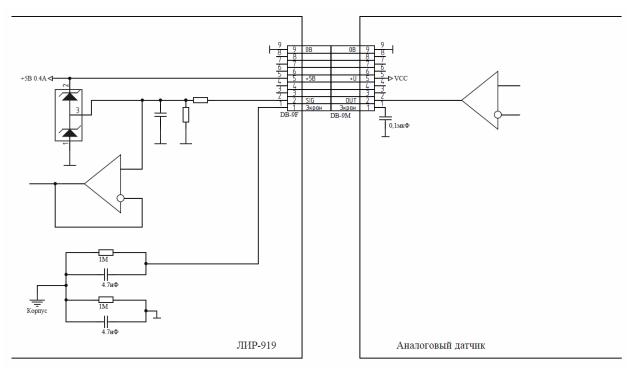


Рисунок 6.2-1. Подключение аналогового датчика

Рекомендации по питанию и подключению экрана, ESD защита такие же, как и для преобразователя перемещений.

6.3. Подключение входов

ЛИР-919

Входы ЛИР-919 опторазвязаны и могут задействоваться как положительным, так и отрицательным уровнем напряжения.

Уровень логической «1» от ± 5 до ± 50 В. Ток входа от 1 до 10 мА.

Пример подключения с общим «+»:

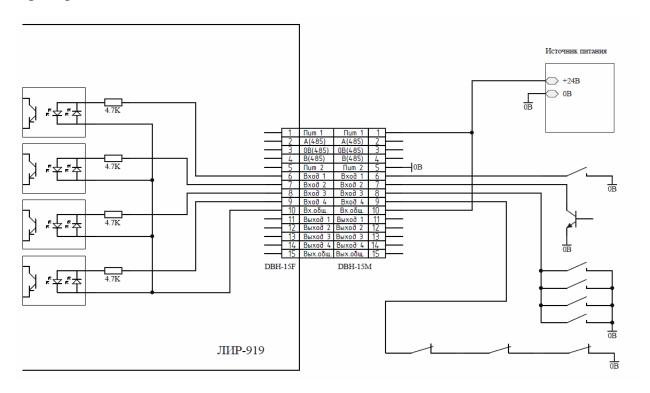


Рисунок 6.3-1. Подключение входов ЛИР-919 с общим "+"

Напряжение питания +24В (+7..50В) подаётся на вход питания ЛИР-919 (контакт 1) и на общий провод входов (контакт 10). Условием срабатыванием входа является его замыкание на 0В (подаётся на вход питания ЛИР-919, контакт 5). Возможна гальваническая развязка источника питания ЛИР-919 и питания входов; так же возможна работа от порта USB, тогда напряжение для входов подаётся от внешнего источника.

К входу 1 (контакт 6) подключен нормально разомкнутый концевой выключатель. При его срабатывании замыкается цепь $\ll +24B$ — оптрон — резистор — выключатель — 0B», что вызывает срабатывание входа.

К входу 2 (контакт 7) подключен выход «открытый коллектор» транзистора. При срабатывании (открытии) транзистора цепь замыкается и оптрон срабатывает.

К входу 3 (контакт 8) подключены несколько концевых выключателей, соединённых параллельно. Срабатывание любого из них вызовет срабатывание оптрона. Такая схема часто используется в обеспечении аварийного останова станка.

К входу 4 (контакт 9) так же подключены несколько концевых выключателей. Выключатели нормально замкнуты и соединены последовательно. Срабатывание любого из них вызовет отключение оптрона, поэтому должна быть включена инверсия входа в настройках ЛИР-919. Такая схема включения используется, когда необходимо контролировать целостность цепи. При обрыве линии оптрон отключается, что может быть сигналом останова станка.

Пример подключения с общим «-»:

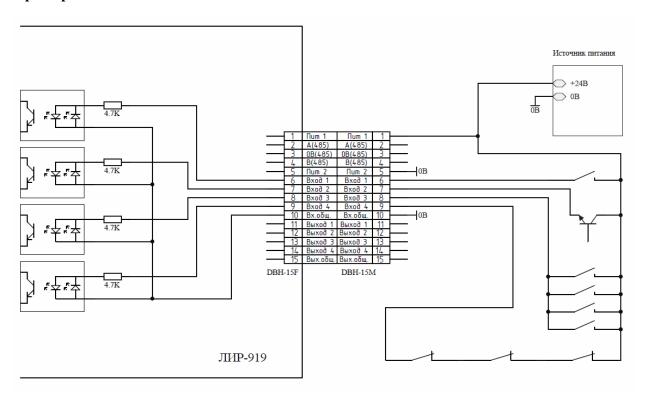


Рисунок 6.3-2. Подключение входов ЛИР-919 с общим "-"

Напряжение питания +24В (+7..50В) подаётся на вход питания ЛИР-919 и на общий провод концевых выключателей. Общий провод входов соединён с 0В. Условием срабатыванием входа является подача на соответствующий контакт напряжения питания.

Так же условием срабатывания входа в данной схеме включения может быть уровень логической «1» от внешней цифровой схемы.

ЛИР-919Д

ЛИР-919Д имеет 8 входов по напряжению, гальванически развязанных от внутренней логики устройства.

В модификации со встроенным преобразователем питания питание логики входов осуществляется от выпрямленного диодным мостом питания устройства (10..30В). Это напряжение присутствует на клеммах "ОТ+" и "ОТ-" для задания логических уровней на входах с помощью внешних устройств автоматики. Данные клеммы не предназначены для подключения мощной нагрузки.

Логические уровни входных сигналов измеряются относительно клеммы "ОТ-". Уровень логического "0" от 0 до 8.4В, "1" – от 9,4В до напряжения питания устройства.

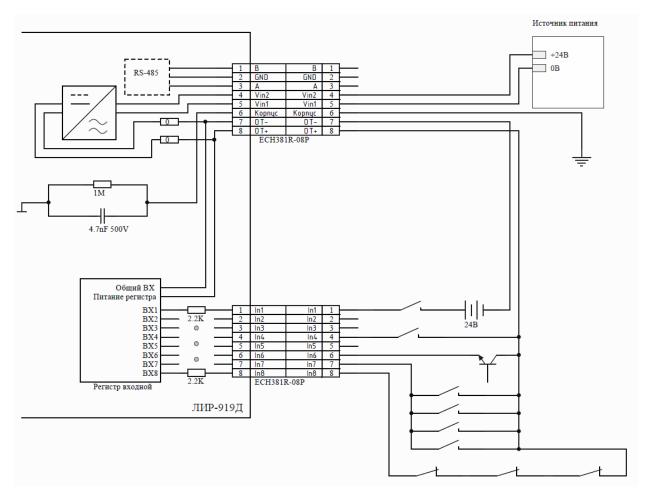


Рисунок 6.3-3. Подключение входов ЛИР-919Д для модификации со встроенным преобразователем питания

В модификации без преобразователя питания на клеммы «ПВВ+», «ПВВ-» необходимо подать напряжение питания логики входов/выходов (10..36В). Логические уровни входных сигналов измеряются относительно клеммы "ПВВ-". Уровень логического "0" от 0 до 8.4B, "1" – от 9,4B до напряжения ПВВ+.

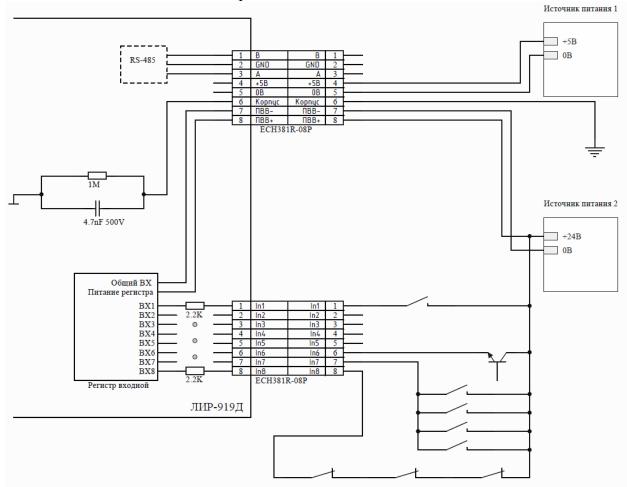


Рисунок 6.3-4. Подключение входов ЛИР-919Д для модификации без преобразователя питания

6.4. Подключение выходов

ЛИР-919

Выходы ЛИР-919 опторазвязаны и имеют тип «открытый коллектор».

Максимально допустимое коммутируемое напряжение составляет 300В, максимально допустимый ток составляет 150 мА на 1 канал.

Пример подключения с общим «-»:

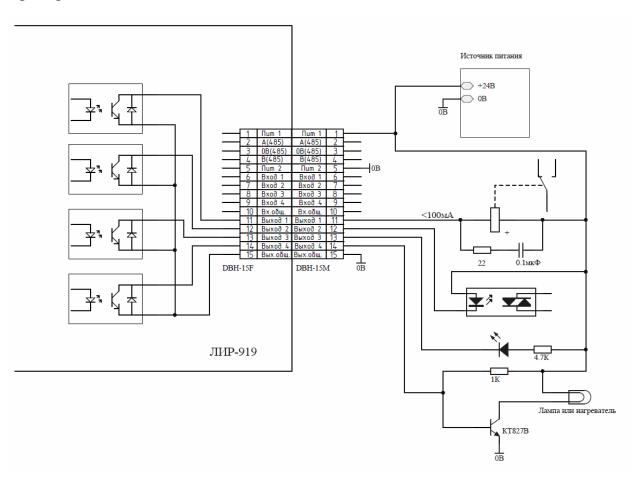


Рисунок 6.4-1. Подключение выходов ЛИР-919 с общим "-"

Общий провод выходов подключен к 0В напряжения питания. +24В напряжения питания подключено к второму проводу нагрузок.

К выходу 1 (контакт 11) подключено электромагнитное реле, имеющее ток обмотки не более 100 мА. Обратное напряжение реле гасится встроенным диодом в ЛИР-919. Повышенное напряжение на реле в момент его отключение гасится цепью снаббера, состоящей из резистора 22 Ом и конденсатора 0,1мкФ с параметрами, позволяющими рассеять мощность импульса.

К выходу 2 (контакт 12) подключено оптореле с встроенным ограничивающим резистором. Оптореле обычно применяется в схемах коммутации напряжения питающей

К выходу 3 (контакт 13) подключен светодиод индикации с токоограничивающим резистором, рассчитанным на напряжение 24В.

OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

К выходу 4 (контакт 14) подключен мощный транзистор, управляющий активной нагрузкой. Для включения лог «1» должна быть включена инверсия выхода в настройках ЛИР-919. Резистор 1 кОм задаёт необходимый ток базы транзистора.

Пример подключения к контроллеру шагового двигателя:

Для подключения по данной схеме входные цепи контроллера должны содержать оптопару. Положительный сигнал оптопар подключается к напряжению питания контроллера (+12B), отрицательные – к выходам ЛИР-919.

Используются следующие сигналы:

EN – сигнал работы/удержания двигателя

DIR – направление движения

STEP – шаг в заданном направлении

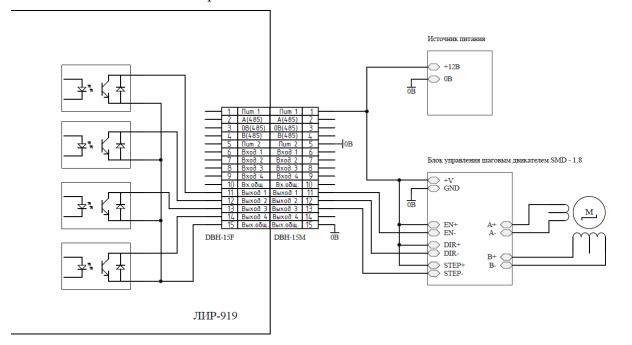


Рисунок 6.4-2. Подключение к контроллеру шагового двигателя типа SMD - 1.8

Выход 4 не задействован.

ЛИР-919Д

Выходы ЛИР-919Д гальванически развязаны от логики устройства и имеют тип «открытый коллектор».

Максимально допустимое коммутируемое напряжение составляет 36В, максимально допустимый ток составляет 90 мА на 1 канал.

В модификации со встроенным преобразователем питания питание логики выходов осуществляется от выпрямленного диодным мостом питания устройства (10..30В) и выдается на контакты "ОТ+" и "ОТ-". Данные контакты не предназначены для подключения мощной нагрузки и служат для обслуживания входных/выходных сигналов.

В активном состоянии выхода соответствующий сигнал подтягивается к "ОТ-".

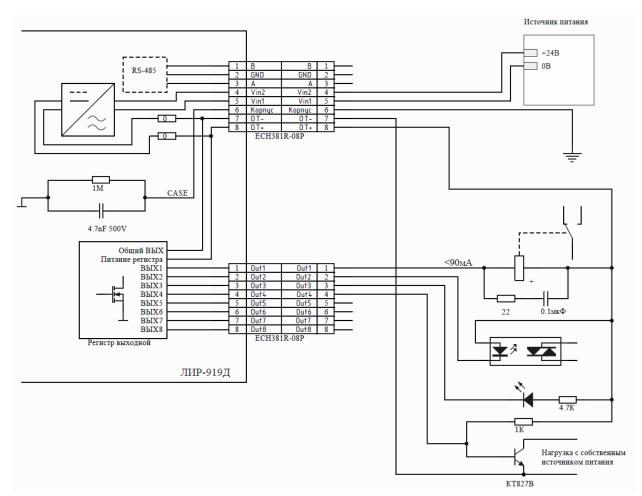


Рисунок 6.4-3, Подключение выходов ЛИР-919Д для модификации со встроенным преобразователем питания

В модификации без преобразователя питания на входы ПВВ необходимо подать питание логики входов/выходов (10..36В). Так же эти входы являются общей точкой. В активном состоянии выхода соответствующий сигнал подтягивается к "ПВВ-".

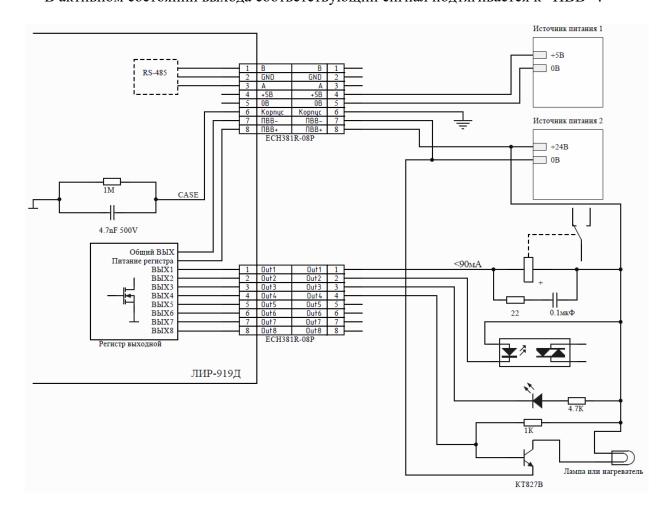


Рисунок 6.4-4. Подключение выходов ЛИР-919Д для модификации без встроенного преобразователя питания

195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33

Подключение интерфейса связи RS-485 6.5.

Интерфейс RS-485 гальванически развязан от других цепей ЛИР-919.

При подключении рекомендовано соединять цепь «0В RS485» с 0В формирователя на приёмном устройстве.

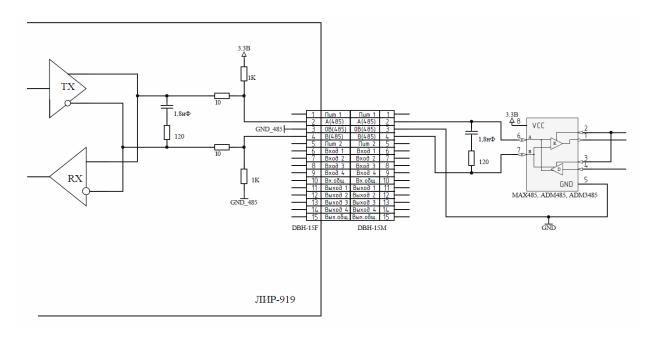


Рисунок 6.5-1. Подключение интерфейса связи RS-485

Максимально допустимая разность потенциалов на входных цепях относительно цепи 0B (Common-mode) составляет +12B/-7B. Минимальное дифференциальное входное напряжение, обеспечивающее работу без ошибки, составляет 0.95В. дифференциальное напряжение не менее 1.5В на нагрузке 54Ом.

Защита от повышенного напряжения и электростатического разряда обеспечивается супрессором, подключенным параллельно входам А и В. Супрессор срабатывает при превышении напряжения на входах на +12В/-7В, а так же защищает электростатического воздействия не более 15кВ/8 мкс (разряд через воздух) или 8кВ/20 мкс (разряд через контакт).

Экран линии RS-485 подключается к металлической обойме разъёма DBH-15. Цепи экрана преобразователя перемещений (см. п. 4.1) и экрана RS-485 объединены.

Для установки потенциалов на линии, если не активен ни один передатчик сети, установлены резисторы 1КОм, подтягивающие вход А к внутреннему напряжению 3.3В, вход $B - \kappa 0B$.

Для ЛИР-919Д подключение аналогично.

OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

7. Обновление встроенного ПО

Программа FirmwareDownloader используется для записи новой версии ПО в устройство. Программа работает в операционных системах семейства Windows.

Интерфейс программы представлен на следующем рисунке:

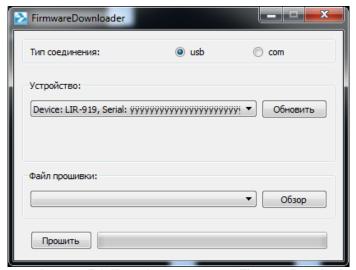


Рисунок 7-1. Интерфейс программы FirmwareDownloader

Для обновления ПО в устройстве необходимо:

- запросить у производителя файл встроенного ПО и программу FirmwareDownloader;
- соединить ЛИР-919 с компьютером через USB кабель;
- перевести устройство в режим программирования с помощью программы Demo;
- запустить программу FirmwareDownloader и заполнить поля:
 - указать файл встроенного ПО, нажав на кнопку "Обзор";
 - выбрать в списке USB устройство, соответствующее обновляемому ЛИР-919;
- нажать кнопку "Прошить";
- дождаться конца выполнения операции;
- если операция завершилась неудачно, выключить и включить устройство и попробовать еще раз.

После полной загрузки новой прошивки устройство автоматически перезагрузится и запустит новую прошивку, если новая прошивка не содержит ошибок, в противном случае снова перейдет в режим программирования.

195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33

8. Области применения устройства

Интерфейс связи

В данном применении ЛИР-919 осуществляет опрос датчика и выводит в понятном формате для информационно-измерительной системы данные о перемещении объекта.

Рисунок 8-1. USB подключение

На рисунке 7-1 представлен пример подключения к компьютеру через USB интерфейс ЛИР-919 с цифровым датчиком. При таком варианте подключения, к компьютеру может быть подключено одновременно несколько устройств, однако одновременный захват позиций по всем каналам будет невозможен.

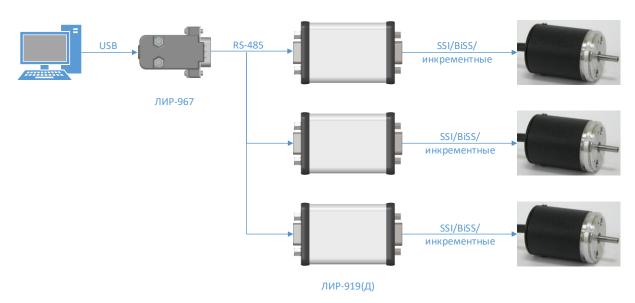


Рисунок 8-2. Подключение в сеть RS-485

В варианте подключения представленном на рисунке 7-2 для соединения компьютера с модулями интерфейса ЛИР-919 используется USB->RS-485 преобразователь (например ЛИР-967). При использовании протокола Modbus RTU данный вариант подключения позволяет производить одновременный захват позиций всех каналов с помощью широковещательной команды, после чего, производится чтение захваченной позиции поканально. Так же в данном варианте, по сравнению с USB подключением, возрастает максимально-допустимое расстояние от ПК до модуля интерфейса.

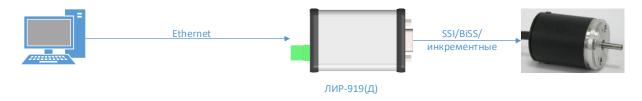


Рисунок 8-3. Подключение через локальную сеть

OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

На рисунке 7-3 изображен пример подключения модуля интерфейса ЛИР-919 через локальную сеть Ethernet с протоколом Modbus RTU over TCP/IP, либо Modbus TCP/IP. Такая реализация подключения позволяет опрашивать позицию датчиков, расположенных удаленно. Как в случае с USB подключением, одновременный захват позиций нескольких каналов невозможен.

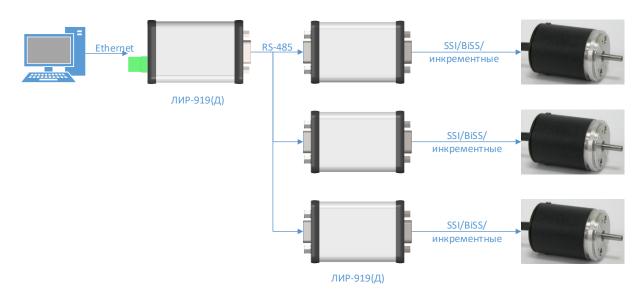


Рисунок 8-4. Подключение сети RS-485 через локальную сеть Ethernet

Рисунок 7-4 иллюстрирует вариант удаленного подключения с возможностью одновременного захвата позиции всех каналов. Запросы Modbus RTU over TCP/IP или Modbus TCP/IP приходят на ЛИР-919, который подключен к сети Ethernet и ретранслируются в сеть RS-485. Опрос датчиков с одновременным захватом позиций осуществляется так же, как в варианте подключения к компьютеру с помощью USB->RS-485 преобразователя.

Контроль допуска параметра

ЛИР-919 работает автономно. С помощью подключенного преобразователя ЛИР-919 производит замеры и в соответствии с заданными настройками зон выдает управляющие сигналы на управляемую автоматику для возвращения контролируемого параметра в допуск или же останавливает процесс, сигнализируя об ошибке.

Добавление контроля координаты в программу контроллера электроавтоматики ЛИР-986.

С помощью подключенного преобразователя ЛИР-919 производит замеры и в соответствии с заданными настройками зон выставляет набор маркеров ЛИР-986. Одновременно в системе может быть использовано несколько модулей интерфейса ЛИР-919.

Выполнение позиционирования с удаленным управлением.

К ЛИР-919 подключается преобразователь и контроллер двигателя. Через USB, RS-485 либо Ethernet задается координата, в которую следует переместиться. ЛИР-919 обеспечивает контроль перемещения.

Автономная работа

Пользователь задает последовательность действий перемещений, изменения состояния выходов, ожидания входов. При включении устройства или по сигналу на его вход, программа запускается и выполняется заданное количество циклов.

OAO «СКБИС» 195009, Санкт-Петербург, Кондратьевский проспект, дом 2, литер А тел. (812) 334-17-72 доб.175, факс (812) 540-29-33 www.skbis.ru

Транспортировка и хранение

Упакованные устройства могут транспортироваться в крытых транспортных средствах при температуре от -50° C до $+50^{\circ}$ C, относительной влажности до 95% при $+25^{\circ}$ C при соблюдении мер предосторожности в соответствии с ГОСТ 9181-83.

Хранение может осуществляться в потребительской таре предприятия-изготовителя при температуре от 0°C до +40°C и относительной влажности 80% при +25°C.

Хранение без тары следует производить при температуре от 0 до +40°C и относительной влажности 80% при +25°C, при этом следует избегать попадания прямых солнечных лучей на устройство. В помещении для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Адрес предприятия-изготовителя

195009, Санкт-Петербург, Кондратьевский пр. д. 2 литер А

тел. (812) 334-17-72 факс (812) 540-29-33 http://www.skbis.ru mail: lir@skbis.ru